MINIMUM SPANNING TREES PRIM'S ALGORITHM

COMPLEXITY $T(n) = O(n^2)$

Consider a undirected graph of four vertices, v_i , $1 \le i \le 4$, with edge (vi, vj) having a weight of i+j.

Pictorial view of the graph:

ADJACENCY MATRIX REPRESENTATION OF THE GRAPH

	1	2	3	4
1	∞	3	4	5
2	3	∞	5	6
3	4	5	œ	7

ADJACENCY LIST REPRESENTATION OF THE GRAPH

PRIM'S ALGORITHMS SIMULATION

Select edge of least cost, this is (1,2) with a cost of 3.

Node number	1	2	3	4
Nearest of	0	0	1	1
those selected				
Cost	0	0	4	5

Note:- The above means that as far as node 3 is concerned 1 is nearest from the nodes selected $\{1,2\}$ and as far as node 4 is concerned 1 is nearest from the nodes selected $\{1,2\}$.

The spanning tree is

Now cost 4 is minimal so 3 is the node selected, i.e. edge (1,3) at a cost of 4. We have adjust for the node number 4. So far 1 was closest with a cost of 5, 3 has been selected now and cost(3,5) is 8, so 1 remains closest with a cost of 5.

Node number	1	2	3	4
Nearest of	0	0	0	1
those selected				
Cost	0	0	0	5

The spanning tree so far is:

Now node 4 is selected:

Node number	1	2	3	4
Nearest of	0	0	0	0
those selected				
Cost	0	0	0	0

The final spanning tree is:

The minimum cost spanning tree has a cost of 11.